Medical Pharmacology Chapter 2: General Principles: Pharmacokinetics
Drug Metabolism: Phase I and Phase II Metabolism
Phase I Metabolism (left) |
Phase II Metabolism (right) |
Attribution:
Saffarzadeh A Phase I Metabolism https://www.youtube.com/watch?v=GGLddVpVg9M (9/2012).
Areo Saffarzadeh Youtube Channel
Attribution:
Saffarzadeh A Phase II Metabolism https://www.youtube.com/watch?v=iIWAUo05GFE (9/2012).
Areo Saffarzadeh Youtube Channel
Lipophilic drug properties that promote passage through biological membranes and facilitate reaching site to drug action inhibit drug excretion.
Note: renal excretion of unchanged drug contributes only slightly to elimination, since the unchanged, lipophilic drug is easily reabsorbed through renal tubular membranes.
Biotransformation of drugs to more hydrophilic molecules is required for elimination from the body
Biotransformation reactions produces more polar, hydrophilic, biologically inactive molecules -- that are more readily excreted.
Sometimes metabolites retain biological activity and may be toxic.
Drug biotransformation mechanisms are described as either phase I or phase II reaction types.
Phase I and Phase II Reactions:- Overview
Parent drug is altered by introducing or exposing a functional group (-OH,-NH2, -SH)
Drugs transformed by phase I reactions usually lose pharmacological activity
Inactive, prodrugs are converted by phase I reactions to biologically-active metabolites
Phase I reaction products may:
Be directly excreted in the urine
React with endogenous compounds to form water soluble conjugates.
Parent drug participates in conjugation reactions that:
Form covalent linkage between a parent compound functional group and:
Glucuronic acid
Sulfate
Glutathione
Amino acids
Acetate
Conjugates are highly polar, and generally biologically inactive.
One exception to this rule is a morphine metabolite, morphine glucuronide which is a more potent analgesic compared to the parent compound.
Conjugates tend to be rapidly excreted in the urine.
High molecular weight conjugates are more likely excreted in the bile.
The conjugate bond may be cleaved by intestinal flora with the parent compound released back to the systemic circulation.
This process, "enterohepatic recirculation" results in delayed parent drug elimination and a prolongation of drug effects.
Principal Organs for Biotransformation
The Principal Organ for biotransformation is the liver, although other organs participate in metabolism.
These other systems include lungs, skin, kidney, and the gastrointestinal tract.
Sequence I could be as follows:
(1) Oral administration (isoproterenol (Isuprel), meperidine (Demerol), pentazocine (Talwain), morphine)
(2) Drug is absorbed intact by the small intestine.
(3) Drug is transported to the liver (portal system) where it might be extensively metabolized by the liver, an example of a first-pass effect.
Sequence II might be as follows:
(1) Oral administration (e.g. clonazepam (Klonopin), chlorpromazine (Thorazine)) and
(2) Drug is absorbed intact by the small intestine.
(3) Extensive intestinal metabolism might ensue, contributing to overall first-pass effects.
Reduced bioavailability might result from several factors including
(a) the first pass effect in which the bioavailability of orally administered drugs become so limited that alternative routes of administration must be employed.
(b) Intestinal flora might metabolize the drug.
(c) The drug itself is unstable in gastric acid; an example of this effect would be penicillin.
(d) The drug might be metabolized by digestive enzymes; an example of this effect would be insulin.
(e) Finally, the drug might be metabolized by intestinal wall enzymes; sympathomimetic catecholamines represent examples of this effect.
First pass effect:
Bioavailability of orally administered drugs may be so limited that alternative routes of administration must be used
Intestinal flora may metabolize drugs
Drugs is unstable in gastric acid, for example, penicillin
Drug is metabolized by digestive enzymes such as nsulin
Drug is metabolized by intestinal wall enzymes such as the sympathomimetic catecholamines
Correia, M.A., Drug Biotransformation. in Basic and Clinical Pharmacology, (Katzung, B. G., ed) Appleton-Lange, 1998, pp 50-61.
Benet, Leslie Z, Kroetz, Deanna L. and Sheiner, Lewis B The Dynamics of Drug Absorption, Distribution and Elimination. In, Goodman and Gillman's The Pharmacologial Basis of Therapeutics,(Hardman, J.G, Limbird, L.E, Molinoff, P.B., Ruddon, R.W, and Gilman, A.G.,eds) TheMcGraw-Hill Companies, Inc.,1996, pp. 3-27
Mixed function oxidase System (cytochrome 450 System)--Phase I Reactions
Microsomes have been used to study mixed function oxidases
Drug metabolizing enzymes are located in lipophilic, hepatic endoplasmic reticulum membranes. Smooth endoplasmic reticulum contains those enzymes responsible for drug metabolism.
One molecule oxygen is consumed per substrate molecule
One oxygen atom -- appears in the product; the other in the form of water
Oxidation-Reduction Process:
Two important microsomal enzymes:
Cytochrome P450: -- terminal oxidase
Multiple forms
Named cytochrome P450 because:
The reduced (ferrous) form, binds carbon monoxide: -- the resulting complex exhibits of absorption maximum at 450 nm.
NOTE in the Figure Below the CONVERSION OF RH to ROH representing DRUG OXIDATION
Cytochrome p450 cycle (diagram by Matthew Segall, 1997) |
|
|
|
|
|
Stoelting, R.K., "Pharmacokinetics and Pharmacodynamics of Injected and Inhaled Drugs", in Pharmacology and Physiology in Anesthetic Practice, Lippincott-Raven Publishers, 1999, 1-17.
Dolin, S. J. "Drugs and pharmacology" in Total Intravenous Anesthesia, pp. 13-35 (Nicholas L. Padfield, ed), Butterworth Heinemann, Oxford, 2000