Anesthesia Pharmacology:  Autonomic Pharmacology Adrenergic Drugs

Previous Page Next Page
Section Table of Contents
Site Table of Contents


Section Table of Contents

Site Table of Contents


Previous Page

Next Page


  1. Hoffman, B.B and Lefkowitz, R.J, Catecholamines, Sympathomimetic Drugs, and Adrenergic Receptor Antagonists, In Goodman and Gillman's The Pharmacologial Basis of Therapeutics,(Hardman, J.G, Limbird, L.E, Molinoff, P.B., Ruddon, R.W, and Gilman, A.G.,eds) TheMcGraw-Hill Companies, Inc.,1996, pp.199-242

  2. Stoelting, R.K., "Sympathomimetics", in Pharmacology and Physiology in Anesthetic Practice, Lippincott-Raven Publishers, 1999, p. 260

  3. Carotic Baroreceptors:  CRRx:  Mediine ReEnvisioned

  4. Westfall, TC and Westfall DP Adrenergic Agonists and Antagonists in Goodman and Gilman's The Pharmacological Basis of Therapeutics, eleventh editions, (Brunton LL, Lazo JS and Parker KL, eds), McGraw-Hill Medical Publishing Division, New York, 237-295, 2006.

  5. Catecholamine Biosynthesis:  The Interactive Library; .

  6. Standaert DG and Young AB Treatment of Central Nervous System Degenerative Disorders In Goodman and Gillman's The Pharmacologial Basis of Therapeutics,(Hardman, J.G, Limbird, L.E, Molinoff, P.B., Ruddon, R.W, and Gilman, A.G.,eds) TheMcGraw-Hill Companies, Inc.,1996, pp536-537.

  7. Adrenergic Neuronal Diagram adapted from

  8. Guanetidine (Ismelin™, brand name not available in the U.S.) pharmacology:  Clinical Pharmacology, RxList:  The Internet Drug Index, .

  9. Williams FM and Turner TJ Adrenergic Pharmacology in Principles of Pharmacology:  The Pathophysiologic Basis of Drug Therapy, 2nd Edition (Golan DE, Tashijan Jr AH, Armstrong EJ and Armstrong AW, eds) Wolters Kluwer-Lippincott Williams & Wilkins, Philadelphia, 129-144, 2008.

  10. Moss J and Glick D Autonomic Function in Anesthetic Pharmacology:  Physiological Principles and Clinical Practice: A Companion to Miller's Anesthesia (Evers AS and Maze M, eds) Churchill Livingstone, Philadelphia, Chapter 14, 209-226, 2004.

  11. Presynaptic Proteins, Synaptic Vesicle Docking and Membrane Fusion,, Neuromuscular Disease Center, Washington University, St. Louis, MO USA (

    • Sudhof TC The Synaptic Vesicle Cycle, Annual Review of Neuroscience, July 200, Vol. 27, pp 509-547.

  12. Phenochomocytoma picture (; Geneva Foundation of Medical Education and Research, Pheochromocytoma, .

  13. Brown H, Goldberg PA, Selter JG, Cabin HS, Marieb NJ, Udelsman R and Setaro JF Hemorrhagic Pheochromocytoma Associated with Systemic Corticosteroid Therapy and Presenting as Myocardial Infarction with Severe Hypertension. Clinical Case Seminar, J Clin Endocrinol Metab 2005 90: 563-569. (

  14. "Clevidine (Cleviprex) for IV Treatment of Severe Hypertension", Table 1.  Some Parenteral Drugs for Hypertensive Emergencies.  The Medical Letter® on Drugs and Therapeutics, Volume 50 (Issue 1295) September 22, 2008.

  15. Katzung, BG Introduction to Autonomic Pharmacology (Section II: Autonomic Drugs) in: Basic and Clinical Pharmacology (10th edition), (Katzung BG, ed) McGraw-Hill Medical , New York, pp. 75-92. 2007.

  16. Sympathetic Nerve Pathway:  Neuroeffector Junction ("Simplified diagram of a sympathetic neuroeffector junction displaying genes which may be involved"); PharmGKb modified slightly to highlight uptake1, uptake-2, uptake 1 block, and location of intravesicular norephinephrine synthesis. (Pharmacogenomics Knowledge Base). .

  17. T.E. Klein, J.T. Chang, M.K. Cho, K.L. Easton, R. Fergerson, M. Hewett, Z. Lin, Y. Liu, S. Liu, D.E. Oliver, D.L. Rubin, F. Shafa, J.M. Stuart and R.B. Altman, "Integrating Genotype and Phenotype Information: An Overview of the PharmGKB Project" (220k PDF), The Pharmacogenomics Journal (2001) 1, 167-170.

  18. Tellioglu T, Robertson D (November 2001). "Genetic or acquired deficits in the norepinephrine transporter: current understanding of clinical implications". Expert Rev Mol Med 2001: 1–10.

  19. Kekuda R, Prasad PD, Wu X, Wang H, Fei YJ, Leibach FH, Ganapathy V (Aug 1998). "Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta". J Biol Chem 273 (26): 15971–9.

  20. Amphoux A, Vialou V, Drescher E, Brüss M, Mannoury La Cour C, Rochat C, Millan MJ, Giros B, Bönisch H, Gautron S. (Jun 2006). "Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain.". Neuropharmacology 50 (8): 941–952.


This Web-based pharmacology and disease-based integrated teaching site is based on reference materials, that are believed reliable and consistent with standards accepted at the time of development. Possibility of human error and on-going research and development in medical sciences do not allow assurance that the information contained herein is in every respect accurate or complete. Users should confirm the information contained herein with other sources. This site should only be considered as a teaching aid for undergraduate and graduate biomedical education and is intended only as a teaching site. Information contained here should not be used for patient management and should not be used as a substitute for consultation with practicing medical professionals. Users of this website should check the product information sheet included in the package of any drug they plan to administer to be certain that the information contained in this site is accurate and that changes have not been made in the recommended dose or in the contraindications for administration.  Advertisements that appear on this site are not reviewed for content accuracy and it is the responsibility of users of this website to make individual assessments concerning this information.  Medical or other information  thus obtained should not be used as a substitute for consultation with practicing medical or scientific or other professionals.